

Mechanical characterization of ultra-thin coatings

Dr. Thomas Chudoba

ASMEC Advanced Surface Mechanics GmbH

Content

- 1) Limits for hardness and modulus measurements
- 2) Accurate determination of tip rounding and area function

3) Solutions for ultra thin coatings

- Ultra sharp tips, ultra low forces
- Extrapolation to zero depth
- Eliminating the substrate influence for fully elastic measurements with spheres
- Eliminating the substrate influence for elastoplastic measurements with sharp tips
- Determining yield strength instead of hardness using micro scratch tests

Measurement limits for ultrathin coatings

Limit 1: Substrate influence

Reason for depth limit

The plastic zone is much larger and deeper than the indent. Therefore the information in the load-displacement curve comes from a depth of up to10 times the indentation depth.

Presentation of the plastic zone in steel using a special etching technique

Limit 2: Tip rounding

Limited resolution due to tip rounding

Area function with high accuracy needed

Minimum indentation depth for comparable hardness results: 20% of tip radius

A Berkovich tip has a typical tip radius between 100 – 300 nm

Minimum film thickness for **hardness** measurements in dependence on tip radius (not for modulus)

Tip radius (nm)	Minimum film thickness (nm)
50	100
75	150
100	200
150	300
200	400
250	500
300	600

Substrate influence on hardness

Limit 3: Position of first plastic yielding

Von Mises stress field for a 50nm thin hard coating on glass in dependence on indenter radius

1 µm tip radius

0.2 µm tip radius

Low depth measurements require an accurate

Determination of tip rounding and area function

There is a permanent wear of the diamond tip. The tip status has to be checked regularly.

Tip check measurements on fused silica with several 100 measurements in between.

Error due to incorrect tip area function in dependence on depth

Determination of area function

Direct method: AFM scan of the tips

Left: broken diamond tip

Right: new tip without defects

Determination of area function

Direct method: Measurement with metrological AFM Indirect method: Indentation measurements on homogeneous reference materials

Inadequate fit function with insufficient term number

How to determine the real tip radius?

- \rightarrow Elastic measurements on a hard reference material
- \rightarrow Hertzian contact calculation

Measurement and fit curve of sapphire

Elastic – plastic transition force for a defect free Sapphire single crystal with strength of 40 GPa (maximum)

Tip radius (nm)	Transition force (μN)
50	31
75	68
100	120
150	280
200	490
250	760
300	1100

Zwick Roell

Advanced surface mechanics

Solutions for ultra thin coatings

- 1) Modulus measurement
- 2) Hardness (yield strength) measurement

Solution 1: Ultra sharp tips, ultra low forces

For highly accurate results two corrections are necessary

Zero point correction

Thermal drift correction

Solution 2 for modulus measurements:

Extrapolation to zero depth

The quasi continuous stiffness measurement (QCSM) method is used to generate enough data over depth

ISO 14577 Part 4

In the case of soft/ductile coatings, indentation force or displacement and indenter geometry shall be chosen such that data shall be obtained in the region where $a/t_c < 1,5$. The plane strain indentation modulus of the coating E_c^* is obtained by taking a series of measurements at different indentation depths and extrapolating a linear fit to plane strain indentation modulus vs. a/t_c to zero, see Figure 4.

Key

- 1 spherical indenter
- 2 Berkovich indenter
- 3 Vickers indenter

QCSM method of ASMEC Quasi continuous stiffness measurement

Example: equal SiO₂ coatings on glass and sapphire

260nm oxide coatings on sapphire and glass substrates, maximum force 18mN

First point at (20 nm; 0,24 mN).

Solution 3 for modulus measurements:

Eliminating the substrate influence for fully elastic measurements with spheres by application of the Hertzian contact model for coatings

Fit of the measurement data with a theoretical load-displacement curve. Known substrate properties; fit parameter: film modulus

Useable software ELASTICA, FilmDoctor

Thin coatings with 80 GPa on substrate with 165 GPa Theoretical force-displacement curve

Measured curves for SiO2 films on Si using a 6.5 μ m radius indenter at 40mN Maximum depth difference < 3.5 nm

Zwick Roell

Source: IWS, Dresden

Acoustic method Measures: Young's modulus Needs: film density and thickness

Contact methodsMeasures:Indentation modulusNeeds:film thickness and substrate properties

AFAM measurements done at Fraunhofer Institute, IzfP, Dresden

Example: Indentation modulus M for Si(100)

Example: nano-thin films of TiAl

Samples prepared at Fraunhofer Institute, IPMS, Dresden

AFAM vs. Nanoindentation

Sample	Film thickness t, nm	AFAM M _f , GPa	Nanoindentation M _f , GPa
	5	92	90
Titanium	10	84	88
aluminide	15	79	79
	20	82	82

The values of the indentation modulus obtained by use of the AFAM method agree very well with those obtained by nanoindentation!

Nanoindentation measurements performed and analyzed by Dr. T. Chudoba, Asmec, GmbH

Solution 4 for modulus and hardness measurements:

Eliminating the substrate influence for elastoplastic measurements with sharp tips by application of a sophisticated contact mechanical model

198.4nm - SiO2 film on Silicon substrate

von Mises Stress (GPa)

Comparison between measurements and calculations for force range 0.3mN -10mN

Comparison between measurements and calculations for force range 0.3mN -10mN

Solution 5 for hardness (yield strength) measurements:

Determining yield strength instead of hardness using micro scratch tests and stress calculations

240 nm thick optical coatings on sapphire

Three 50mN und 700mN micro scratch tests over each other

The two coatings show different failure modes

It was not possible to resolve hardness differences with a conventional tip (radius abut 200nmm)

The difference between pre-scan and post-scan of the surface allows detection the elastic-plastic transition

Yielding starts in the coating since the substrate was hard enough for these samples

Yield strength results

Sample number	Fcrit mN	Ļ	Yield strength GPa
479	6.89	0.061	6.97
486	6.60	0.067	6.5
488	8.30	0.078	7.4
489	8.49	0.088	7.64
531	12.75	0.110	8.79
532	131.79	0.069	20.8
485/sapphire	8.93	0.065	6.31
485 /glass	31.92	0.057	6.25
Sapphire	171.500	0.084	27.7

Von Mises stress profile for sample 479

Thank you for your attention !

Nanoindentation: state of the art

Maximum force F, displacement h and the unloading stiffness S are used for the calculation of hardness H and modulus E.

The contact area A_c has to be calculated from the indentation depth. This requires a model.